Skin Lesion Classification: Transformation-based Approach to Convolutional Neural Networks
نویسندگان
چکیده
Diagnosing malignant skin lesions early is often the difference between life or death. With the increasing accessibility of deep learning tools that have demonstrated outstanding performance for image classification, it is no surprise that there has been an extensive effort to employ neural networks in the diagnosis of skin lesions. We explore a method of late-fusion of three identical CNN’s models, trained with three different image transformations (RGB, FFT, and HSV) of the same dataset. The resulting fused accuracy of 98% is a 4% increase to each lone network.
منابع مشابه
Non-melanoma skin cancer diagnosis with a convolutional neural network
Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...
متن کاملSkin lesion detection based on an ensemble of deep convolutional neural network
Skin cancer is a major public health problem, with over 5 million newly diagnosed cases in the United States each year. Melanoma is the deadliest form of skin cancer, responsible for over 9,000 deaths each year. In this paper, we propose an ensemble of deep convolutional neural networks to classify dermoscopy images into three classes. To achieve the highest classification accuracy, we fuse the...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملA New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks
Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...
متن کاملSkin Lesion Classification Using Hybrid Deep Neural Networks
Skin cancer is one of the major types of cancers and its incidence has been increasing over the past decades. Skin lesions can arise from various dermatologic disorders and can be classified to various types according to their texture, structure, color and other morphological features. The accuracy of diagnosis of skin lesions, specifically the discrimination of benign and malignant lesions, is...
متن کامل